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The first example of regiospecific magnesium carbenoid
1,3-CH insertion: its mechanism and stereochemistry
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Abstract—Addition reaction of two geometrical isomers of 1-chlorovinyl p-tolyl sulfoxides, derived from unsymmetrical ketones
and chloromethyl p-tolyl sulfoxide, with lithium enolate of tert-butyl acetate gave single isomers of the adduct, respectively. Treat-
ment of each diastereomer with i-PrMgCl resulted in the formation of magnesium carbenoids. Highly regiospecific 1,3-CH insertion
reaction was found to take place from the magnesium carbenoids to afford cyclopropanes in high yields. Stereochemistry of the
adducts, reaction mechanism, and origin of the regiospecificity are discussed.
� 2007 Elsevier Ltd. All rights reserved.
The carbon–hydrogen insertion (CH insertion) reaction
is one of the most striking reactions of carbenes and
carbenoids. The reaction is very interesting and quite
useful for construction of molecules, because formation
of a carbon–carbon bond between a carbene (or carbe-
noid) carbon and an inactivated carbon is achieved.

Especially, rhodium-catalyzed cyclization of a-diazocar-
bonyl compounds giving cyclopentanone derivatives
and c-lactones is well known. This is the most famous
intramolecular 1,5-CH insertion of carbenoids derived
from a-diazocarbonyl compounds.1 Recently, intramo-
lecular 1,5-CH insertion reaction of alkylidene carbene
was widely investigated for construction of cyclopentene
derivatives.2 Although 1,5-CH insertion reactions giving
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cyclopentane derivatives are extensively studied, as men-
tioned above, 1,3-CH insertion reactions affording
cyclopropane derivatives are quite limited.3

We recently reported a new method for the synthesis
of bicyclo[n.1.0]alkanes 4 from cyclic ketones 1 via
1-chloroalkyl p-tolyl sulfoxides 2.4 The key reaction of
this procedure is magnesium carbenoid 1,3-CH insertion
reaction of carbenoid 3, generated from 2 with
i-PrMgCl by the sulfoxide–magnesium exchange reac-
tion5 (Scheme 1).

As the magnesium carbenoid 1,3-CH insertion is an
unprecedented highly useful reaction for the synthesis
of cyclopropanes, we further investigated this reaction
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starting from acyclic unsymmetrical ketones and quite
interesting results were obtained.

Thus, geometrical isomers of vinyl sulfoxides E–5 and
Z–5 were synthesized from 4-phenyl-2-butanone in high
overall yields.6 Addition reaction of these vinyl sulf-
oxides with lithium enolate of tert-butyl acetate gave
adducts 6 and 7, respectively, in quantitative yields.
Adducts 6 and 7 were both single isomers and diastereo-
mers to each other. The adducts were treated with
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Table 1. Synthesis of cyclopropanes 14 from 1-chlorovinyl p-tolyl sulfoxide
insertion
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Entry 12

R1 R2 Configuration

1 Me n-Pentyl E

2 n-Pentyl Me Z

3 Me (CH2)4COOtBu E

4 (CH2)4COOtBu Me Z

5 Me (CH2)5COOtBu E

6 (CH2)5COOtBu Me Z

7
Me ðCH2Þ2PMP

ðCH2Þ2PMP Me

� �
E, Z mixture (E:Z = 4:3)

a Obtained as a single isomer.
b A 3:1 mixture of two diastereomers.
c A 4:1 mixture of two diastereomers.
d A 4:3 mixture of two diastereomers.
e Minor cyclopropane was obtained as a 6:1 mixture of two diastereomers.
i-PrMgCl (ether solution) in toluene at �78 �C and the
temperature of the reaction mixture was slowly allowed
to warm to 0 �C.7 Interestingly, the treatment of 6 with
i-PrMgCl gave cyclopropane 10 in 90% yield without
any contamination of cyclopropane 11. On the contrary,
the same treatment of 7 with i-PrMgCl afforded cyclo-
propane 11 in 89% yield without any trace of cyclopro-
pane 10. Namely, the 1,3-CH insertion of adduct 6,
derived from E-5, took place between the carbenoid car-
bon and the methyl carbon to give 10. The 1,3-CH inser-
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tion reaction of adduct 7, derived from Z-5, took place
between the carbenoid carbon and the methylene carbon
to give 11 with perfect regiospecificity (Scheme 2).

In order to know the generality of this regiospecific mag-
nesium carbenoid 1,3-CH insertion reaction, we next
synthesized two geometrical isomers 12 from unsymmet-
rical ketones as shown in Table 1. As the unsymmetrical
ketones, 2-heptanone (entries 1 and 2), tert-butyl
6-oxoheptanoate (entries 3 and 4), tert-butyl 7-oxooct-
anoate (entries 5 and 6), and 4-(4-methoxyphenyl)-2-
butanone (entry 7) were selected. Each geometrical
isomer was separated and reacted with lithium enolate
of tert-butyl acetate to give adduct 13 in quantitative
yield. In the case shown in entry 7, the geometrical iso-
mers could not be separated and used as a mixture.

Each adduct 13 was treated with i-PrMgCl (ether solu-
tion) to give cyclopropane 14 with perfect regiospecific-
ity in high yield. Very interestingly, adduct 13 derived
from E-1-chlorovinyl p-tolyl sulfoxides gave the cyclo-
propanes from the 1,3-CH insertion reaction between
the carbenoid carbon and the methyl carbon (entries 1,
3, 5, and 7). On the contrary, adduct 13 derived from
Scheme 3.
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Z-vinyl sulfoxides gave the cyclopropanes from the
1,3-CH insertion reaction between the carbenoid carbon
and the methylene carbon (entries 2, 4, 6, and 7). It is
worth noting that this is an unprecedented highly regio-
specific carbenoid 1,3-CH insertion reaction.

Elucidation of the origin of this regiospecificity is quite
important for development of the chemistry of magne-
sium carbenoid. We tried to determine the stereochemis-
try of adducts 6 and 7. Unfortunately, as they are oily
products, they were converted to well crystalline carb-
oxylic acids 15 and 16, and the stereochemistry was
determined by X-ray analysis8 (Scheme 3). As shown
in Scheme 3, configurations of the carboxylic acids 15
and 16, derived from 6 and 7, were determined to be
(3R*,4R*,sS*) and (3S*,4R*,sS*), respectively.

With configuration of adducts 6 and 7 in hand, the
mechanism of this highly regiospecific carbenoid 1,3-
CH insertion reaction is explained as follows (Scheme
4). Because the sulfoxide–metal exchange reaction is
known to take place with retention of configuration of
the carbon bearing the sulfinyl group,9 treatment of
6 with i-PrMgCl gives magnesium carbenoid having
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R*-configuration. The magnesium and carbonyl oxygen
atom of the ester group must make six-membered inter-
mediate A, in which the bulkiest tert-butoxy group
would occupy equatorial position. In this intermediate,
C–H bond of the methyl group attacks back side of
the chlorine atom to give cyclopropane 10.

The situation of the reaction of 7 with i-PrMgCl is
thought to be quite similar. Thus, the most stable
six-membered transition state having the interaction
between magnesium and carbonyl oxygen atom must
give the chair-like intermediate B, from which the mag-
nesium carbenoid 1,3-CH insertion reaction would give
cyclopropane 11.

In order to confirm the validity of this explanation, we
converted 6 and 7 to trityl ether 17 and 18, respectively,
in two steps (Scheme 5). Treatment of 17 with EtMgCl10

gave a mixture of cyclopropanes 19, 20, and 21 (90%
yield; 19:20+21 = 5:2) with almost no regiospecificity.
A similar result was obtained from the reaction of 18
with EtMgCl (38% yield with 41% of the recovery of
18; 19:20+21 = 5:3). As expected, these reactions
showed only low regioselectivity. Loss of the highly
Lewis-basic carbonyl oxygen is thought to be the
most important factor for the disappearance of
the regiospecificity.

In conclusion, we found that the magnesium carbenoid
1,3-CH insertion reaction of the substrate having an
ester group proceeded with complete regiospecificity.
The origin of the regiospecificity was discussed on the
bases of the fixed conformation of the magnesium carb-
enoid intermediate. The results described in this Letter
contribute greatly to further development of the chemis-
try of magnesium carbenoids and also to regiospecific
synthesis of cyclopropanes.
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20.409(7) Å, a = 77.374(4)�, b = 88.875(4)�, c =
88.308(4)�, V = 1903.2(11) Å3, Z = 4, F(000) = 800,
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